Documentation


Use Ephapsys to securely manage the full lifecycle of your AI agents and their models.

Boost performance, provision with trust, enforce secure inference, and maintain audit-grade governance.

Snippets mirror the samples in the official github repo.


Install the SDK & CLI v0.2.5

bash
pip install ephapsys

API Reference (Python)

High-level classes and core methods.

ClassPurposeKey Methods
TrustedAgentManage signed model packages and secure lifecyclefrom_package(path, org_id), bind(hardware, tpm?), register(pki, metadata?), verify(pki), is_revoked(pki), session(enforce)
ModulatorClientModulate artificial neurons with ephaptic couplingfetch(ecm_id), load(path), validate(ecm)

Modulation

Launch ephaptic modulation jobs to tune activation fields toward a KPI without retraining or exposing raw checkpoints.

python
1from ephapsys.modulation import ModulatorClient
2
3mc = ModulatorClient(AOC_API_URL, AOC_API_KEY)
4mc.start_job(
5    model_template_id,
6    variant="additive",
7    kpi=kpi,
8    mode="auto",
9    dataset=dataset,
10    search=search,
11)
12tpl, job_id = mc.wait_for_job_id(model_template_id)
13print("job:", job_id)

Provision

Provision a signed agent package and bind it to trusted hardware.

python
1# Personalize + bind to trusted anchor
2import os
3from ephapsys import TrustedAgent
4
5agent = TrustedAgent.from_env()
6anchor = os.getenv("PERSONALIZE_ANCHOR", "tpm")
7
8result = agent.personalize(anchor=anchor)
9agent.prepare_runtime()
10print("Agent personalized via", result.get("anchor", anchor))

Verify & Enforce

Verify integrity, certificate chain, revocation state, and host binding. Then wrap inference in an enforcement session.

python
1# Verify + wrap inference in an enforcement session
2ok, report = agent.verify()
3if not ok:
4    raise RuntimeError(f"Agent blocked: {report}")
5
6with agent.session(lease_seconds=1800) as session:
7    reply = agent.run("Hello, world!", model_kind="language")
8    print("response:", reply)

Secure Inference

Perform inference through a policy‑enforced session. Violations block execution.

python
1# Secure inference (policy-enforced)
2ok, _ = agent.verify()
3if not ok:
4    raise RuntimeError("Agent disabled or revoked")
5
6agent.prepare_runtime()
7result = agent.run(
8    input_data="Hello, world!",
9    model_kind="language",
10)
11print(result)

Revocation

Revoke agents that fail attestation or violate policy. Enforced on next verification.

python
1# Revoke certificates for a compromised agent
2resp = agent.revoke_certificates(reason="compromised_host")
3print("revoked:", resp.get("revoked", 0))